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ferroelectrics triglycine sulphate and triglycine selenate 

B Westwanski and B Fugiel 
Institute of Physics, Silesian University, Uniwersytecka 4,40-007 Katowice, Poland 

Received 13 July 1990, in final form 20 November 1990 

Abstract. A form of the scaling function is proposed which gives a considerably more accurate 
description of the critical properties of the ferroelectrics triglycine sulphate and triglycine 
selenate in the paraelectric phase than the theoretical models hitherto applied, i.e. the 
Landau theory and the approximate model based on lhe Larkin-Khmelnitskii theory. 

1. Introduction 

Neither the Ginzburg-Landau-Wilson model of phase transition plus the renor- 
malization group and E-expansion, nor the series analysis by the Pad6 approximants 
method for the Ising and Heisenberg model explains the very small corrections to the 
classical values of critical indices. There is also available the theory of Larkin and 
Khmelnitskii (1969) theory for uniaxial ferroelectrics (Aharony 1973), in which the 
classical critical exponents are modified by logarithmic corrections. From this theory is 
derived the equation of state (Bervillier 1975, Binder era1 1976) 

E = a(rP + &P3) P . =  dPlIn(r + 0.5gaZ~*l-’/’ (1) 

where a, d and g are phenomenological constants, E is the electric field, P is the 
polarization, and t = T/T, - 1 is the reduced temperature. This equation may be 
expanded in a series. In the paper by Binder et al(1976) this is given up to the order of 
Ps. The equivalent equation of state but to the power P 3 ,  also taking into account the 
crossover molecular field theory (MFT) Ising dipolar system, is derived from the free 
energy (Natterman 1978) for T > T,: 

F =  hYoTq(T)Pz  + &q3(t)P4 (2) 

where q(5)  = [l - 36 I n ( r / ~ ~ ) ] - ’ / ~  and (yo, Po, yo, to and b (>O) are parameters. 
From analysis of high-temperature series expansions by means of the Pad6 approx- 

imants it is known (Baker and Gaunt 1967, Fisher 1967) that it is very difficult to 
distinguish between the logarithmic singularities and small critical exponent singularities 
(t-* = 1 - a In t, la1 Q 1). Additionally, the previously conducted analysis of exper- 
imental data for ferroelectricsexhihiting ‘quasi-Landau’ critical behaviour (Fugiell989) 
indicates that the difference between a small critical exponent correction and a log- 
arithmic correction lies within the limits of experimental error. In the case of the free- 
energy equation (2) this indistinguishability signifies satisfying the condition 
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3bJln(z/zo)l 1. Therefore we can use the approximation exp[-3b In(r/zo)] = 
1 - 36 In(r/ro). Then the logarithmic correction q(r)  in (2)  may be interpreted in the 
sense of a small exponent b > 0: 

B Westwaitski and B Fugiel 

d4 = ( r / zOlb  (3) 

F = tC,zYP2 + +Cqr3bP4 (4) 

and equation (2) may be written as follows: 

where C, = w0/z$, y = 1 + band C4 = flo/rzb. 
The model based on the energy equation (4) satisfactorily explains the slight dev- 

iations from the Landau critical exponents (Fugiel e! a1 1990). However, its deficiency 
is clearly observable when the susceptibility scaling function derived from (4) is com- 
pared with the corresponding experimental data. In accordance with (4), for the non- 
ordered phase this function may be written in the form 

G(X0IX) = 27Bocu~3bivr~~b/v-I)E2 xo ’ ( 5 )  
whereG(x)=x3+3x2-4,y= 1 + b , h = A / y = G / ( S -  l),A=$andG#3,arecriti- 
cal exponents and the reduced temperature is contained implicitly in the zero-field 
susceptibility k;’ ,= C2zY). Then, in accordance with ( 5 ) .  Gk0/x) is a linear function 
of the argument E-xzh. However, from the experimental results we have obtained for 
the ferroelectrics triglycine selenate (TGSe) and triglycine sulphate (TGS), it must be 
concluded that the relation G(,yo/x) versus E’X?, althoughit has the nature of ascaling 
function, is dearly non-linear, particularly for TGSe (figure 1). Therefore, to achieve 
better agreement with experiment, it becomes necessary to modify equation (5). 

2. Results 

The experimentally recorded non-linearity of the function G(Xo/x) versus E*,$ (figure 
1 and figure 2) may, in the first approximation, be expressed as follows: 

GOlol~) = ~ I Y  + ~ Z Y ’  (6) 
where y = E2x$ .  On the basis of our experimental results we have, for both TGS and 
RSe ,  a ,  > 0 and u2 > 0. The satisfactory concentration of experimental points along 
the curve describing the polynomial (6) in figure 1 and figure 2gives evidence of the fact 
that the approximation presented here is correct, or at least considerably better than 
function (5) .  

The physical arguments behind equation (6) are of the same type as given in the 
paper by Fugiel er ul (1990) where it was shown that the function G(,~~/,y)~fi = 
h0/x + 2)  k0/x  - 1)”’ is non-linear in the argument Ex; for TGS and TGSe crystals. 
This non-linearity is evidence that the higher-order terms P6,  P 8 , .  , . of free energy must 
give contributions to the scaling of the same order as those coming from P z  and P4 terms 
and this is in contradiction to the molecular-field theory in which P6,  P8 ,  . . . powers are 
insignificant in the neighbourhood of the critical point. The possibility that the higher- 
order powers P” (n > 3) may contribute to the scaling follows from the results reported 
by Domb and Hunter (1965) and by Patashinskii and Pokrovskii (1966), deduced on the 
basis of series analysis (plus extrapolation by Pad6 approximants) of high-temperature 
series expansions for the king model. Using this idea we derived equation (6) in a 
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Figure 1. Cko/,y) versus E ' x f ,  where h = 6/(6 - 1) = 1.45 and d = 2 9 / 9 f o r ~ ~ S e .  Values 
ofXo were determined at six temperatures in the interval corresponding to < (T - TJ/ 
T, < 10-l at atmospheric pressure. The susceptibility x was determined for each of six 
temperatures for about 15 values of field E. The full curve is the numerical fit according 
to equation (6) for 0 ,  = 0.498 X 10-"m2V~', n2 = 0.0277 X 10-"m4V-4, i.e. for = 
oI /a:  =0.11. The measurement technique has been described by Fugiel and Westwahski 
(1990a). The inset shows the schematic portrayal of the definition of invariant Q = XO/,yhl. 

separate paper, where we also showed that the critical invariant (see below) 
q = a2/a: = 5C2C,/81Ci is related to the constant positive coefficients 4C2, iC4 and 
+C, of the corresponding singular free energy of more general form than given in 
equation (4). The susceptibility ~ ( a .  E )  in the non-ordered phase should be an even 
function of E because free energy is an even function of P. For these reasons, in this 
paper we have considered the function G ( X o / ~ )  (instead of G(Xo/~)'lZ), for which the 
fitting of non-linearity to the series in variabley = E2$' is natural. In the opposite case, 
thefittingofthefunctionG(Xo/X)'/Ztotheseries(a,r + azzZ + . . .)ofitsnaturalvariable 
z = EX; has no physical meaning because the susceptibility x(r ,  E )  would not be an 
even function of E. 

A certain knowledge of the scaling function gives the opportunity of obtaining a 
considerable amount of information on the critical behaviour. Unfortunately, to the 
best of our knowledge this function is known only for the non-ordered phase in the 
mean-field approximation (b = 0 in equation ( 5 ) )  (cf also Cach er all982)  and for the 
free energy (4) (see equation ( 5 ) ) .  Hence equation (6) is of particular significance. In 
order to check the suitability of equation (6) it is convenient to introduce a parameter 
7 = az/u: which is a measure of deviation from the Landau theory, for which q = 0. 
Interesting results are obtained when comparing values of q with those of another 
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FigureZ G(X./x)versus E'x?,whereh = &/(a - 1) = 1.46andd = 73IWforrcS. Values 
of xo were determined at 18 temperatures in the interval corresponding to IO-' < (T - T,)/ 
T, C 10" at atmospheric pressure. The susceptibility ,y was determined for each 01 18 
lemperatures for about nine values of field E. The full curve is the numerical f i t  according 
10 equation (6) for 0 )  = 2 1 7  x IO-"m'V-', U >  = 0.0197 x 10-mm'V-', i.e. for = 
u2/uf = 0.004. 

parameterQ,whichmay bedefined bytherelation Q = ~~/~~,wherex,isthemaximum 
value of paraelectric susceptibility in an external electric field E applied parallel to the 
ferroelectric axis and the susceptibility at E = 0, at the same temperature (see inset 
to figure 1). It has been proved (Westwanski and Fugiel 1991) that the quantity Q is a 
universal constant (independent of external field and temperature) at the extrema of 
non-zero-field susceptibility, specific heat and correlation function for any physical 
system behaving according to the scaling hypothesis. This result is extended (Fugiel and 
Westwahski 1991) to the case of dynamic susceptibility and discussed using the example 
of the Debye model. 

On the basis of equation (6) and for the condition ax/aT = 0, where x is the para- 
electric susceptibility at E # 0, we obtain the following relationship between 7 and Q: 

7 = [ ( E  - l)Qz - Q + 2][(2 - &)e2 + 2Q - 4]-'(Q + 2)-' (7) 
where E = 3(6 - 1)/26 = 3y/2A. As may be seen, the expression relating 17 and Q 
contains the critical exponent S, which may also be determined from measurements 
outside the critical isotherm (Fugiel and Westwariski 1990a), when assuming the cor- 
rectness of the scaling hypothesis, i.e. making use of the formula 6 = (A/y - l)-'A/y. 
Since 6 and Q are critical invariants, then from equation (7) it is clear that q is also a 
critical invariant. Equation (7) is a further example of the nile, known from the scaling 
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Table 1. Experimental data on 6 (partly taken from the paper by Fugiel and Westwafiski 
(199Lla)). Qand 7 fortheferroelectricsrGSandrGSe. Correspondingvaluesfor theLandau 
theory are shown for comparison. 

6 Q ‘I 

m S e  3.1-3.3 1.41.6 0.14.2 
TGS 3.05-3.3 1.8-1.9 M.02  
Landau theory 3 2 0 

hypothesis and confirmed by the renormalization group method, according to which 
two independent invariants are sufficient to determine the remaining invariants. The 
invariant Q has been measured experimentally for TGS (Westwariski and Fugiel1991) 
and TGSe (Fugiel and Westwanski 1990b) crystals and the values of Q were found to lie 
between the Landau critical (Q = 2) and tricritical (Q = 4) point values. The sus- 
ceptibility scaling functions and invariant Q for Landau critical and tricritical points 
above and below T, are discussed in a separate paper. In table 1 are presented the 
intervalsin which lie the most probablevaluesof 6, Qand qobtainedfromexperimental 
tests on several TGS and TGSe samples. Some of the data for 6 in TGSe was also found at 
pressures differing from atmospheric pressure (Fugiel and Westwanski 1990a) and 
agreeing with the results at atmospheric pressure, 

Ifwesubstitutein (7)valuesfrom table 1 takenfromthe middleofthegiven intervals. 
i.e. 6 = 3.2, Q = 1.5,forTGSe,and6 = 3.18, Q = 1.85,forTGS, weobtainq = 0.12for 
TGSe and q = 0.007 for TGS. Thus there is good agreement between the experimental 
values of 11 shown in table 1 and the values calculated from (7) making use of the 
experimental data for 6 and Q. Greater deviations from the Landau theory found in the 
values of Q for TGSe are accompanied by correspondingly greater deviation in 11-values, 
in comparison with the corresponding parameters for TGS. 

3. Conclusions 

From the discussion presented above, it may be concluded that equation (6) not only 
permits non-Landau values of critical exponents but also, unlike (S), explains the 
deviation from the Landau critical point value Q = 2. 

In this paper we have tried to demonstrate the superiority of equation (6) over 
equation ( 5 )  which was derived from the free-energy equation (4). It is obvious that the 
form of the free-energy equation given in ( 2 )  has similar if not even greater drawbacks 
than the form in equation (4). If we take as the starting point the free energy (Z), then 
for the non-ordered phase we obtain the relation 

G h o / x )  = 27po[1 - 3b1n(z/z0)]-*E2x~ (8) 
where xo = l/aozq(z) with q(z) defined below equation (2 ) .  Instead of the non-linear 
scaling function (6), in equation (8) we have to deal with a whole family of straight lines 
which additionally are not coincident; this does not agree with experiment. 

Nevertheless, it should not be anticipated that the approximation (6) is satisfactory 
in the immediate vicinity of the critical point, i.e. for y + a, i.e. 5 + 0. In this case the 
quadratic multinomial in y appearing on the right-hand side of equation (6) should be 
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better replaced by an infinite series. The quadratic in y found in equation (6) .  however, 
proves to be of great significance and sufficient to explain the deviations from Landau 
theory presented in table 1. It may be asserted that the scaling function (6). shown to be 
considerably more satisfactory than function ( 5 ) ,  gives a good description of TGS and 
TGSe in the neighbourhood of TM(E) and above TM(E), where T&) is the temperature 
at which the paraelectric susceptibility in the electric field E reaches a maximum. 

We have then shown that in addition to the exponent ratio method (A/y) (Fugiel 
and Westwahski 1990a) for determining experimental scaling function, it is very useful 
to apply the described non-linearity method based on investigation of non-linearities 
produced by the experimental scalingfunction &/,yo versus E , y f r )  inserted into equation 
(5) for the susceptibility scaling function for the Landau critical point ( b  = 0). The 
invariant Q is a measure of non-linearity. The greater the non-linearity of the function 
Gko/x) versus y = EZx?,  the larger is the deviation of invariant Q from the classical 
value Q = 2 for the Landau critical point. If non-linearity is convex as in figure 1 and 
figure 2, then Q is less than 2 ;  if it isconcave, then Q is greater than 2. 

We have also investigated the susceptibility scaling function below the critical point 
for TGS and TGSe ferroelectrics. The experimental relation for x/xo versus E,y$y 
obtained in the ferroelectric phase is characterized by a larger scatter of measurement 
points than for the analogous relation in the paraelectric phase. Hence the estimation 
of exponent ratio A/y hasa greater error. This has meant that up to now the analysisof 
the susceptibility scaling function in the ferroelectric phase is insufficiently accurate. 
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